PROTEIN 1.1.2

INTRODUCTION

- A protein is a complex, organic compound that consists of amino acids joined by peptide bonds.
- o Proteins are essential to the structure and function of all living cells and viruses.
- o Many proteins are hormones, enzymes and antibodies.
- o Protein is a macronutrient, therefore it is needed by the body in large amounts.
- o It is measured in grammes (g).
- o It is essential for every living cell as protein is the only nutrient that contains the element Nitrogen (N), which is essential for growth.

CHEMICAL COMPOSITION

- Students should be aware that the term chemical composition can be used interchangeably with the term chemical structure.
- o It should be noted that diagrams must always be included in the answer.
- o Protein exists in animal and vegetable foods in the form of chains.
- The basic unit of a protein chain is called an **amino acid**.
- There are over 20 amino acids in nature.
 - Essential amino acids: these cannot be made by the body.
 - Non-essential amino acids: these can be made by the body.
- o Regardless of the type of amino acid, each amino acid has five parts.
- o Four of the five parts are the same for all amino acids.

NOTE: The only difference between each amino acid is the variable which is denoted by R.

EXAMPLES OF R-GROUP

Amino acid Cysteine : R = HSCH 2

■ Amino acid Glycine : R = H

• Amino acid Phenylalanine : $R = C_6H_5C_2$

o As protein chains are formed, amino acids link together.

o The link between any two amino acids is called a peptide link or peptide bond.

• As each peptide link is formed, one molecule of water is eliminated and this is known as a condensation reaction.

PEPTIDE LINKAGE

- \circ The acid group (COOH) in one molecule reacts with the basic group (NH $_2$) in the other molecules, (ie) : the OH (hydroxyl group) of the carboxyl group (COOH) combines with H (Hydrogen) of the amino group (NH $_2$) to form one molecule of water, a CONH link is also formed.
 - o A Dipeptide is formed when two amino acids link together AA-AA.
 - A Tripeptide is formed when three amino acids link together (AA-AA-AA). All
 other protein chains composed of many amino acids are called ...
 - Polypeptides (AA-AA-AA-AA-AA-..), therefore protein chains are called polypeptide chains.

ELEMENTAL COMPOSITION

- Proteins are composed of the elements C (Carbon), H (Hydrogen), O (Oxygen) and N (Nitrogen).
- Sometimes, proteins contain S (Sulphur) and P (Phosphorous).

NB: PROTEIN STRUCTURE

- Protein chains (polypeptide chains) are not always straight. Sometimes the protein chains are spiral, zig-zag, spherical, have double helix structures etc.
- o Protein structure is classified according to:

(1): PRIMARY STRUCTURE

o Refers to the order/sequence that amino acids appear on a protein chain.

• The linkage between the amino acids on the protein chain is known as peptide linkage.

(2): SECONDARY STRUCTURE

- o Refers to further linking on the protein chain (ie): beyond peptide linkage.
- Often due to the presence of disulphide bridges or hydrogen bonds on the protein chains.
- o As a result of this linkage the protein chains can have spiral or helix structures.

(A): Disulphide Bridges

o Disulphide bridges are sometimes present on single protein chains.

- The SH (Sulphur containing) group of one amino acid cysteine links with the SH group of another cysteine on the same protein chain.
- o **Result**: The protein chain will have a spiral structure.

o Disulphide bridges can also occur on two neighbouring protein chains.

- The SH group of cysteine on one protein chain links with the SH group of cysteine on a separate protein chain.
- o Result: The protein chains have a double helix structure.

(B): Hydrogen Bonds

- o Hydrogen bonds are weaker than disulphide bridges orbonds.
- Hydrogen links with oxygen.
- o The hydrogen bonds form between the backbone oxygens and amide hydrogens.
- These hydrogen bonds have an important role as they help stabilise the secondary structure (eg): alpha helix, beta sheets etc.

 $\underline{\text{Hydrogen bonds}}$ – H from the NH₂ of the amino acid serine on one protein chain bonds with the O of the COOH of the amino acid - tyrosine

(3): TERTIARY STRUCTURE

- o This refers to the pattern of folding on protein chains.
- o Resulting in the protein chains having a three-dimensional (3D) structure.
- o The protein chains maintain these 3D structures due to the presence of cross-links.

(A): Globular Proteins

- o Example : Ovalbumin in egg white.
- The protein chain folds back on itself forming a 3D shape that roughly resembles a ball of wool or twine (it is quite irregular in shape).

(B): Fibrous Proteins

- o Example : Gluten in wheat.
- Gluten is made up of two polypeptide chains, glutenin and gliadin. These protein chains interlock forming a 3D zig-zag structure (this gives gluten it's elastic property).

PEPTIDE BOND/PEPTIDE LINKAGE (2006 Q1B)

CLASSIFICATION OF AMINO ACIDS

Essential Amino Acids Non-Essential Amino Acids	
. O Cannot be produced by the body.	o Can be produced by the body
o Adults need 8.	
o Children need 10	
Valine (Val)	Glycine (gly)
Leucine (Leu)	Alanine (Ala)
Isoleucine (Ile)	Tyrosine (Tyr)
Lycine (Ly)	Serine (Ser)
Threonine (Thr)	Cysteine (CySH)
Methionine (met)	Cystine (CySSCy)
Tryptophan (Trp)	
Phenylalanine (Phe)	
Arginine (Arg) (children)	
Histidine (His) (children)	

CLASSIFICATION OF PROTEINS

SIMPLE PROTEINS:

CONJUGATED PROTEINS

Туре	Examples
Lipoproteins	LDL (low density lipoprotein)
	i.e. 'good cholesterol'
Chromoproteins	Haemoglobin (red pigment in blood)
Nucleoproteins	RNA and DNA
Phosphoproteins	Casein in milk
Glycoproteins	Some enzymes an hormones

SOURCES OF PROTEIN AND ITS CONTRIBUTION IN FOOD

(i) Animal Protein Foods		(ii) Plant Protein Foods	
Protein	Source	Protein	Source
Ovalbumin	Egg white	Gluten	Wheat, oats
Vitellin, livetin	Egg yolk	Gliadin	Wheat
Lactalbumin, casein	Milk	Zein	Maize
Myosin, actin	Fish	Hordenin	Barley
Myosin, albumin	Meat		
Collagen	Connective tissue		
Gelatine	Bones, connective		
	tissue		
Caseinogen	Cheese		

FUNCTIONS OF PROTEIN

(1): NUTRIENT PROTEINS

- o Protein provides a supplementary energy source.
- o Protein foods provide a source of essential amino acids.

(2): PHYSIOLOGICALLY ACTIVE PROTEINS

- Production of hormones (eg): insulin.
- o Production of enzymes (eg): pepsin.
- Production of antibodies.

(3): STRUCTURAL PROTEINS

- o Production of keratin in skin, hair and nails.
- o Production of cells.
- o Production of myoglobin in muscle

EFFECTS OF TOO LITTLE & TOO MUCH PROTEIN

To	oo little Protein	Too much Protein
PR	Fatigue. Insulin resistance. Hair loss/loss of hair pigment (hair that should be black becomes reddish).	 Build-up of ketones in the body which may cause kidney damage. Loss of calcium in the urine.
0	Loss of muscle mass.	
0	Hormonal irregularities	

PROPERTIES OF PROTEIN

EFFECT OF DRY HEAT (MAILLARD REACTION)

- Non enzymic browning.
- Food containing a mixture of amino acids and carbohydrates
 (eg): sugar, are exposed to dry heat (oven, grill).
- A chemical reaction takes place between the HN 2 (amino group) in the protein and the OH (hydroxyl group) of the carbohydrate resulting in food turning brown (eg): sponge cake, roast potatoes.

EFFECT OF MOIST HEAT (STEWING)

Tough cuts of meat (eg): lamb gigot (neck) chops, are stewed slowly for a number of hours. The protein (collagen) in connective tissue dissolves and converts to gelatine.

Result: the meat becomes tender.

EFFECT OF ENZYMES (CHEESEMAKING)

 During the initial stages of cheese production, rennin (stomach enzyme from calf) or chymosin is added to pasteurised milk and heated to 30°C. Proteins in milk (casein) coagulate and curds are formed from which cheese is made.

FOAM FORMATION (MERINGUES / PAVLOVA)

Foam formation is an example of coagulation. Egg protein has the property of creating a foam. When egg white is beaten, air bubbles are formed. The globular protein chains unravel, beating generates heat to slightly coagulate the ovalbumin which forms a thin layer and sets around the air bubbles. The mixture becomes opaque and stiff.

GEL FORMATION (MOUSSES / CHEESECAKES)

Gelatine is an animal protein with 0% biological value. Powdered gelatine is sprinkled on to warm water, as the gelatine is hygroscopic this water is absorbed and a gel is formed (sponging gelatine). The gel is heated above 35°C and added to mousse or cheesecake mixtures. This liquid gelatine is called a sol. The dessert is then chilled in a refrigerator and the mixture sets.

ELASTICITY

Protein in wheat/oats and rye known as gluten has elastic properties when moisturized.
 This is due to the fibrous zig-zag structure of gluten. This property is necessary in bread, cake and pastry making as gluten allows the mixtures to stretch during baking.

SOLUBILITY

o Most proteins are insoluble in water. However, egg white is soluble in cold water. As mentioned earlier, gelatine (animal protein) dissolves during moist cooking.

EFFECT OF PH

 Marinades used to tenderise meat proteins have an acid pH (eg): red wine, yoghurt, lemon juice, vinegar.

COAGULATION

- Most proteins coagulate or set when heated (eg): cooking eggs egg white coagulates at 60°C, yolk coagulates at 68°C
- Meat fibres shrink when heated releasing water, extractives and vitamins.

DENATURATION

- The protein structure is altered considerably from its original state.
- o Protein chains are unravelled.
- o Irreversible reaction.
- May be caused by heat mechanical action (eg): whipping egg white, addition of acid to milk.

NB: BIOLOGICAL VALUE

- Biological value of protein is the amount of protein in a food retained and utilised by the body. It is always expressed as a %.
- There are two types of BV :
 - (A): High Biological Value (HBV)
 - (B): Low Biological Value (LBV)

(A) HIGH BIOLOGICAL VALUE (HBV)

- Protein foods with a HBV are usually animal in origin with a BV above 70%.
- These foods are often referred to as complete protein foods which means they contain all 10 essential amino acids.
- o **Example**: Eggs HBV 100%. Meat HBV 80%-90%.
- Exception: Soya beans even though of plant origin are HBV protein foods (HBV 74%).
 They are particularly valuable in the diet of vegans.

(B) LOW BIOLOGICAL VALUE (LBV)

- o Protein foods with a LBV are usually plant in origin with a BV below 70%.
- These foods are often referred to as incomplete protein foods because they are deficient in one or more of the essential amino acids.
- Example: Wheat LBV 53%, wheat is lacking in lycine. Beans LBV 58%, beans are lacking in methionine.
- o Exception: Gelatine LBV 0%.

COMPLIMENTARY/SUPPLEMENTARY VALUE

- This is the ability of one protein food to compensate for the amino acid deficiency of
 another protein food.
- o Ideally this should be done as part of the same meal.
- o **Example**: Beans on Toast.

Food	Limiting amino acid	
Beans	Methionine ↓	
(Toast) Wheat	Lycine ↓	

 Limiting amino acid is the amino acid which is the lowest in a food, below the body's requirement.

Beans	↓ Methionine	↑ Lycine
Toast	↑ Methionine	↓ Lycine

Other examples of complementary value include:

- Tofu with brown rice.
- o Beans and brown rice.
- o Hummus with wholewheat pitta bread.
- o Peanut butter sandwich on whole grain bread.

DEAMINATION

- o This is a process that involves breaking down excess amino acids in the body.
- o It takes place in the liver.

- Protein provides a secondary (supplementary) energy source during deamination. Ideally this energy should only be used for the body's internal work.
- Excess amino acids travel to the liver via a large blood vessel called the hepatic portal vein.
- In the liver, the following takes place.
- The carboxyl groups are oxidized to release energy (secondary source).
- The amino group is broken down to ammonia, then urea and converted to urine which is then excreted.

RDAs (PROTEIN REQUIREMENTS)

Adult	55-75g
Teenager	60-80g
Pregnant woman	70-85g
Child	30-50g

- o 1g protein when oxidized releases 4 kilocalories (kcal) or 16.8 kilojoules (kJ) of energy for the body.
- Protein foods should provide the average person with 17-18% of their total energy requirements.